> 首页 > 问答 > 正文

求篇微积分的发展史,3000字以上

2022-05-03点击数: 编辑:

微积分学 (Calculus,拉丁语意为用来计数的小石头) 是研究极限、微分学、积分学和无穷级数的一个数学分支,并成为了现代大学教育的重要组成部分。历史上,微积分曾经指无穷小的计算。更本质的讲,微积分学是一门研究变化的科学,正如几何学是研究空间的科学一样。


微积分学在科学、经济学和工程学领域有广泛的应用,用来解决那些仅依靠代数学不能有效解决的问题。微积分学在代数学、三角学和解析几何学的基础上建立起来,并包括微分学、积分学两大分支。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行演绎。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。微积分学基本定理指出,微分和积分互为逆运算,这也是两种理论被统一成微积分学的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。在更深的数学领域中,微积分学通常被称为分析学,并被定义为研究函数的科学。


 


积分的起源很早,古希腊时期就有求特殊图形面积的研究;用的是穷尽的方法。
阿基米德(Archimedes)用内接正多边形的周长来穷尽圆周长,而求得圆周率愈来愈好的近似值,也用一连串的三角形来填充抛物线的图形,以求得其面积;这些都是穷尽法的古典例子。


文艺复兴之后,基于实际的需要及理论的探讨,积分技巧有了进一步的发展。譬如为了航海的方便,杰拉杜斯·麦卡托(Gerardus Mercator)发明了所谓的麦氏投影法,使得地图上的直线就是航海时保持定向的斜驶线。


17世纪的前半,是微积分学的酝酿时期。确实划分微积分学这门学科是在17世纪由戈特弗里德·威廉·莱布尼茨和艾萨克·牛顿几乎同时创立的,对此学界曾有极大的争论,两人曾为争夺微积分的发明权诉诸皇家学会仲裁。 在他们创立微积分以前,人们把微分和积分视为独立的学科。而微积分之名与其符号之使用则是莱布尼茨所创。


虽说微积分是莱布尼茨和牛顿发明的,但是指的是他们两人使微积分观念成熟,澄清微、积分之间的关系,使计算系统化,并且把微积分大规模使用到几何与物理上。在他们之前,微积分是萌芽时期,观念在摸索中,计算是个别的,应用也是个别的。


在牛顿、莱布尼茨以前,对微分、积分最有贡献的大概要算皮埃尔·德·费马了,可惜他未能体会两者之间的密切关系。而牛顿的老师伊萨克·巴罗(I. Barrow)虽然知道两者之间有互逆的关系,但他不能体会此种关系的意义,其原因之一就是求导数还没有一套有系统的计算方法。古希腊平面几何的成功,予西方数学非常深远的影响,一般认为,唯有几何的论证方法才是严格的,才是真正的数学,代数也不过是辅助的工具而已。直到笛卡儿及费马倡导以代数的方法研究几何的问题。这种态度才渐有转变。可是一方面几何思维方式深植人心,而另一方面代数方法仍然未臻成熟,实数系统迟迟未能建立,所以许多数学家仍然固守几何阵营而不能有有效的计算方法,如巴娄就是。牛顿虽然背叛了他老师的纯几何观点,发展了有效的微分方法,可是他的方法迟迟未敢发展。虽然他用了微积分的技巧,由万有引力及运动定律出发说明了他的宇宙体系,但因害怕当时人的批评,在他1687年的巨著《自然哲学的数学原理》中,却把微积分的痕迹抹去,而仍以古典的几何论证方式论述。


微积分实际被许多人不断地完善,也离不开巴罗、笛卡尔、费马、惠更斯和沃利斯的贡献。


牛顿、莱布尼茨虽然把微积分系统化,但它还是不严格的。可是微积分被成功地用来解决许多问题,却使十八世纪的数学家偏向其应用性,而少致力于其严格性。当时,微积分学的发展幸而掌握在几个非常优越的数学家,如欧拉(L. Euler)、拉格朗日(J. U. Lagrange)、拉普拉斯(P.S. de Laplace)、达朗贝尔(J.de R. d'Alembert)及伯努利(Bernoulli)世家等人的手里。


研究的问题由自然现象而来,所以能以自然现象的数据来验合微积分的许多推论。使微积分学不因基础不稳而将之错误。在这些众数学家的手中,微积分学的范围很快地超过现在大学初阶段所授的微积分课程,而迈向更高深的解析学。


发展现代微积分理论的一个动力是为了解决“切线问题”,另一个是“面积问题”。


 

[编辑] 微积分的主要内容
微积分主要有三大类分支:极限、微分学、积分学。微积分的基本理论表明了微分和积分是互逆运算。牛顿和莱布尼茨发现了这个定理以后才引起了其他学者对于微积分学的狂热的研究。这个发现使我们在微分和积分之间互相转换。这个基本理论也提供了一个用代数计算许多积分问题的方法,该方法并不真正进行极限运算而是通过发现不定积分。该理论也可以解决一些微分方程的问题,解决未知数的积分。微分问题在科学领域无处不在。


微积分的基本概念还包括函数、无穷序列、无穷级数和连续等,运算方法主要有符号运算技巧,该技巧与初等代数和数学归纳法紧密相连。


微积分被延伸到微分方程、向量分析、变分法、复分析、时域微分和微分拓扑等领域。微积分的现代版本是实分析。

[编辑] 极限
微积分中最重要的概念是“极限”。微商(即导数)是一种极限。定积分也是一种极限。


从牛顿实际使用它到制定出周密的定义,数学家们奋斗了200多年。现在使用的定义是维斯特拉斯于19世纪中叶给出的。


数列极限就是当一个有顺序的数列往前延伸时,如果存在一个有限数(非无限大的数),使这个数列可以无限地接近这个数,这个数就是这个数列的极限。


数列极限的表示方法是:


标签:

版权声明

    转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢您的支持与理解。

相关文章